Cellular origin of cancer: dedifferentiation or stem cell maturation arrest?
نویسنده
چکیده
Given the fundamental principle that cancer must arise from a cell that has the potential to divide, two major nonexclusive hypotheses of the cellular origin of cancer are that malignancy arises a) from stem cells due to maturation arrest or b) from dedifferentiation of mature cells that retain the ability to proliferate. The role of stem cells in carcinogenesis is clearly demonstrated in teratocarcinomas. The malignant stem cells of teratocarcinomas are derived from normal multipotent stem cells and have the potential to differentiate into normal benign mature tissue. A widely studied model supporting dedifferentiation has been the putative origin of hepatocarcinomas from "premalignant" foci and nodules induced in the rat liver by chemicals. However, the dedifferentiation concept for hepatocarcinogenesis is challenged by more recent interpretations indicating that hepatocellular carcinoma arises from maturation arrest caused by aberrant differentiation of determined stem cells. Either hypothesis is supported by the cellular changes that occur in the rodent liver after different hepatocarcinogenic regimens. The formation of foci and nodules from altered hepatocytes supports dedifferentiation; the proliferation of small oval cells with the potential to differentiate into either biliary ducts or hepatocytes supports arrested maturation of determined stem cells. It is now postulated that foci and nodular change reflect adaptive changes to the toxic effects of carcinogens and not "preneoplastic" stages to cancer. The stem cell model predicts that genotoxic chemicals induce mutations in the determined stem cell which may be expressed in its progeny. Proliferation of initiated cells is induced by promoting events which also allow additional mutations to occur.
منابع مشابه
I-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملQuercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin
Objective(s):The colorectal cancer stem cells (CSCs) with the CD133+ phenotype are a rare fraction of cancer cells with the ability of self-renewal, unlimited proliferation and resistance to treatment. Quercetin has anticancer effects with the advantage of exhibiting low side effects. Therefore, we evaluated the anticancer effects of quercetin and doxorubicin (Dox) in HT29 cancer cells and its ...
متن کاملAlpha-fetoprotein, stem cells and cancer: how study of the production of alpha-fetoprotein during chemical hepatocarcinogenesis led to reaffirmation of the stem cell theory of cancer.
Identification of the cells in the liver that produce alpha-fetoprotein during development, in response to liver injury and during the early stages of chemical hepatocarcinogenesis led to the conclusion that maturation arrest of liver-determined tissue stem cells was the cellular process that gives rise to hepatocellular carcinomas. When the cellular changes in these processes were compared to ...
متن کاملCrude Methanol Extract of Echinophora Platyloba Induces Apoptosis and Cell Cycle Arrest at S-Phase in Human Breast Cancer Cells
The aim of the present study was to determine cytotoxic activity of crude methanolicextract of Echinophora platyloba on breast cancer MDA-MB-231 cell line. The free radicalscavenging effects of methanolic extract of E. platyloba were tested using DPPH method.Crude methanolic extract exhibited potential antioxidant activity with an IC50 value of 234.28 ±21.63 μg/mL when compared to the standard ...
متن کاملCrude Methanol Extract of Echinophora Platyloba Induces Apoptosis and Cell Cycle Arrest at S-Phase in Human Breast Cancer Cells
The aim of the present study was to determine cytotoxic activity of crude methanolicextract of Echinophora platyloba on breast cancer MDA-MB-231 cell line. The free radicalscavenging effects of methanolic extract of E. platyloba were tested using DPPH method.Crude methanolic extract exhibited potential antioxidant activity with an IC50 value of 234.28 ±21.63 μg/mL when compared to the standard ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 101 شماره
صفحات -
تاریخ انتشار 1993